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ABSTRACT
With various IoT cameras today, sharing of their video evidences,
while benefiting the public, threatens the privacy of individuals
in the footage. However, protecting visual privacy without losing
video authenticity is challenging. The conventional post-process
blurring would open the door for posterior fabrication, whereas
the realtime blurring results in poor quality, low-frame-rate videos
due to the limited processing power of commodity cameras.

This paper presents Pinto, a software-based solution for produc-
ing privacy-protected, forgery-proof, and high-frame-rate videos
using low-end IoT cameras. Pinto records a realtime video stream at
a fast rate and allows post-processing for privacy protection prior
to sharing of videos while keeping their original, realtime signa-
tures valid even after the post blurring, guaranteeing no content
forgery since the time of their recording. Pinto is readily imple-
mentable in today’s commodity cameras. Our prototype on three
different embedded devices, each deployed in a specific application
context—on-site, vehicular, and aerial surveillance—demonstrates
the production of privacy-protected, forgery-proof videos with
frame rates of 17–24 fps, comparable to those of HD videos.
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1 INTRODUCTION
The popularization of inexpensive, network-enabled cameras has
opened an era of personalized video surveillance.We find such video
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(a) On-site security cam (b) In-car dashcam (c) Aerial drone cam

Figure 1: Personalized video surveillance cameras.

recording in a wide range of real-world applications today (Fig. 1),
from on-site security cameras to in-vehicle dashboard cameras (or
dashcams), and to aerial drone cameras. These cameras record every
event in their view, making their videos valuable evidence [6, 16, 18].
Further, a recent work has shown the feasibility of sharing video
evidences with network-enabled cameras [46, 69].

However, sharing of video evidences, even for the common good,
creates a significant threat to the privacy of individuals in the
footage. Many types of sensitive things, such as human faces, vehi-
cle license plates, and residential address signs, could be captured
in the footage. This has raised social concerns and ongoing debates
about visual privacy [28, 55, 58], making it a key barrier to video
sharing. For example, sharing or release of private surveillance
videos, despite the public benefit, is strongly discouraged or forbid-
den by law in some countries, such as Germany and Austria, due
to visual privacy concerns [9, 17].

Sharing video evidence for the common good while minimizing
its impact on privacy requires that: 1) videos have visual privacy
protection and the degree of visual privacy depend on the circum-
stances of requests; 2) videos be properly authenticated, e.g., time
of recording and data integrity; and 3) videos be of good quality.

In this work, we aim to develop a solution that fulfills these re-
quirements. The key challenge is that they are not isolated problems,
but intertwined with one another under two critical constraints—
limited device capabilities and content-oblivious hashing—rendering
existing solutions inadequate. The conventional post-processing
of videos to blur1 out contents [41, 56, 67] will nullify their orig-
inal signatures, i.e., unique hashes at the time of their recording
that are certified via trusted timestamping [22], opening the door
for posterior fabrication. Indeed, video forgery has become ex-
tremely simple with video editing software readily available today
[5, 33], which makes video evidence less reliable these days. On the

1In this paper, we use the term “blurring” to refer broadly to the visual obfuscation,
rather than the Gaussian blur in image processing.
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other hand, realtime blurring, capable of getting the signatures of
blurred videos on the fly, is only possible with specialized hardware
[26, 31, 40, 50, 52, 54], and the quality of results highly depends
on the device capabilities. As reported in [11, 14], it produces poor
quality videos with frame rates at only 1–5 fps (frames per second)
when applied to low-end devices due to their limited processing
power.

This paper presents Pinto, a software-based solution for produc-
ing privacy-protected, forgery-proof, and high-quality videos using
low-end IoT cameras. Pinto leverages three key ideas. First, while
object detection on realtime video stream is expensive, pixelation
of a given frame area is computationally lightweight. By exploit-
ing such computational asymmetry, Pinto performs fast pixelation
of entire frames in real time while deferring the CPU-intensive
object detection until necessary for video sharing. Second, frame
division into subimage blocks allows fine-grained visual privacy on
each frame. Pinto uses the subimage block-level pixelation for both
realtime and post processing. Third, pixelation, when combined
with hashing, is also useful for forgery prevention. We devise hash-
pixelation (or h_pixelation) for this purpose, and use it in place of
the conventional pixelation. Pinto uses realtime signatures of fully
h_pixelated videos as proofs of their authenticity, such that poste-
rior fabrication would produce different h_pixelation results from
the original ones. Given a post h_pixelated video, the requester can
authenticate it by reconstructing the certified, fully h_pixelated
version via selective block h_pixelation.

Pinto has several merits: (i) the fast, lightweight realtime opera-
tion allows video recording at a high frame rate in low-end devices;
(ii) the CPU-intensive object detection is executed only when video
sharing is needed, saving the device power to do other things; (iii)
the post processing only permits pixelation for privacy protection
while prohibiting any other modification to original videos; (vi)
the post pixelation enables post-decision on visual privacy upon
request, flexibly determining the degree of visual privacy of stored
videos at the time of their release; (v) video processing is done at
the camera level, hence not requiring powerful back-end servers;
and (vi) it is a software-based solution immediately implementable
in today’s commodity IoT cameras.

We implement Pinto in three different embedded platforms (720
MHz–1.2 GHz CPUs), and deploy them to specific application con-
texts: on-site security cam, in-car dashcam, and aerial drone cam.
Our evaluations show that Pinto provides: (i) strong privacy pro-
tection (recognition success ratio < 1%) (ii) reliable authenticity
verification (forgery-proof guarantee) and (iii) good quality videos
(17–24 fps), comparable to those of HD videos.

2 BACKGROUND
Surveillance IoT cameras. Personalized video surveillance
cameras have become commodity items, and now widely available
as low-cost devices ($30–$250 [4]). They have low-end processors
(700 MHz–1.2 GHz CPU), and come with 64–128 GB on-board SD
memory cards. These cameras continuously record in segments
for a unit-time (1-min default) and store them inside. Once the
memory is full, the oldest segment will be deleted and recorded
over. For example, with 128 GB cards, videos can be kept for 2–3
weeks internally. Many of these devices today feature a built-in

(a) Privacy protection (b) Content forgery

Figure 2: Examples of post-processed videos.

wireless network interface. Such IoT connectivity is for transmit-
ting realtime metadata on the fly and for occasionally archiving
certain videos in the cloud-based storage.

3 MOTIVATION
3.1 Use Cases
Sharing surveillance videos. Personalized surveillance videos
are often useful to others who want to review their associated
events. There are emerging applications that share stored videos
taken by security cameras for suspicious activities [25, 27] or dash-
cams for car accidents [46], based on a time specified in the requests.
Data stores like Bolt [38] provide platforms for securely storing,
querying, and sharing IoT camera data, with data integrity guar-
anteed via timestamped signatures at the time of their recording.
However, sharing videos in their original form impacts the privacy
of individuals or bystanders in the footage. Pinto is an ideal com-
plement to these systems, making them support post-processing of
stored data for visual privacy protection, which was previously not
possible when guaranteeing data authenticity.
Publishing video evidences. People are often willing to release
their video evidences to the press or social media, especially when
having captured unusual scenes such as disasters, traffic accidents,
crime scenes, etc. However, publication of footage captured by per-
sonal recording devices is strongly discouraged in some countries
even by law, due to visual privacy concerns. For example, individ-
uals who release dashcam footage could be subject to a fine [17]:
up to e300,000 in Germany, e25,000 in Austria, e10,000 in Portu-
gal, etc. Pinto offers a practical solution for releasing private video
evidence: the owners release post-blurred versions of the video
evidences with their original timestamped signatures still valid.

3.2 Threat Model
Visual privacy. We consider any entity with access to original
contents as an invader of visual privacy—except the recording de-
vices and their owners inevitably. For example, video requesters
are potential attackers. Given a processed video, the requester(s)
should not be able to access the original version. We assume a
strong adversary with powerful analytics capabilities, e.g., auto-
mated recognition and machine learning based tools to recognize
original, sensitive contents.
Video forgery. Processing of original videos is necessary for
privacy protection (Fig. 2a), but it may induce content forgery
(Fig. 2b). Such forgery can be done posteriorly with video editing
software available today [5], especially by dishonest owners to
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Method Resulting Video Visual Video
frame rate quality privacy authenticity

Raw recording 24.0 fps ✓ ✗ ✓
Realtime Blurring 2.3 fps ✗ Weak ✓
Fingerprinting 1.1 fps ✗ ✓ Probabilistic
Watermarking 1.2 fps ✗ ✓ Probabilistic

Pinto 24.0 fps ✓ ✓ ✓

Table 1: Processing of realtime video stream on a low-cost
embedded device (1.2 GHz CPU).

fabricate video evidence. On the other hand, we assume to have a
trusted timestamping server [22] and thus, rolling back time is not
possible. More specifically, a hash of the video upon recording is
sent from an IoT camera (via WiFi or LTE) to the server that signs
the hash with the current time.

3.3 Desired Properties
Visual privacy protection. Prior to sharing of videos, they
must be visually protected depending on situations, for example,
types of objects to be blurred upon the circumstances of requests,
request type, seriousness of incidents, etc. Such requests are not
known a priori. This calls for a solution framework that allows
post-processing for visual privacy protection.
Video authenticity. Privacy-protected videos must be properly
authenticated. The conventional post-blurring of videos, which
invalidates their original, realtime signatures, is undesirable for
video authentication.
Fine video quality. Privacy-protected videos must be of good
quality. First, they should have high frame rates. For example, videos
with low frame rates (below 12 fps) are perceived as jerky motion
[51]. Second, they should keep the blurring intensity and the size
of blurred areas as minimal as possible while protecting sensitive
objects. Overly-blurred videos are perceptually jarring, and signifi-
cantly degrade the human-perceived video quality [36, 39].

3.4 Limitations of Existing Approaches
Existing vision or image processing techniques fail to meet the
requirements above when running on low-end devices. We demon-
strate this by experimenting with their performance over realtime
video stream on a Raspberry Pi with 1.2 GHz CPU. Table 1 summa-
rizes the results.
Conventional blurring. Asmentioned earlier, the conventional
post-blurring fails to provide video authenticity. On the other hand,
realtime blurring can produce a hash of a blurred video on the fly.
We have implemented the realtime blurring on a Raspberry Pi using
OpenCV [13] with dlib [10] and OpenALPR [1] libraries that come
with many pre-trained Haar classifiers for faces and license plates.
The resulting videos have an average frame rate of 2.3 fps. which is
even lower than the previous results reported in [46]. Note, their
system does not consider face privacy, which usually takes more
CPU time than plate blurring. Furthermore, the videos show some
frames that are not properly blurred. Note, failure in a single frame
entirely invalidates the purpose of blurring.
Video fingerprinting. Fingerprinting [47] is an image process-
ing technique to recognize videos that have been modified slightly

Processing time taken per frame
Object Resulting Detect time Pixelate I/O timeblurring frame rate

Human face 2.3 fps 431.5 ms 0.05 ms 47.4 ms
(89.7%) (0.01%) (10.2%)

Car plate 5.1 fps 146.2 ms 0.05 ms 47.1 ms
(75.5%) (0.02%) (24.4%)

Table 2: Time taken in each step when running real-time
blurring on a Raspberry Pi (1.2 GHz CPU).

(e.g., blurring, rotation, cropping, etc). It works by extracting char-
acteristic features of a video, called “fingerprint”, then matching it
against a “reference” database of copyrighted materials.

Such visual-similarity checking may be useful for video authenti-
cation because a post-blurred video could still produce a fingerprint
that is “probabilistically similar” to that of the original one. In this
case, fingerprints of original videos should be produced at the time
of recording for the realtime signatures on those fingerprints. How-
ever, this is a herculean task for simple, low-cost embedded devices.
Indeed, our experiment using a lightweight SIFT-based feature al-
gorithm [59] on a Raspberry Pi results in fingerprint generation
with a frame rate of 1.1 fps.
Digital watermarking. Another technique for detecting visual
similarity is digital watermark [63]. It works by embedding hidden
information, called “watermark” into a video, then using it later
to verify the integrity of the video. This is broadly used for digital
content control, e.g., to trace copyright infringements. Robust wa-
termarking [57, 65] has more advanced features to further detect
benign or malignant modifications in media files. This type of water-
mark may be also useful for video authentication if such watermark
could be generated and embedded over realtime video stream. Un-
fortunately, this is very challenging [29] especially for low-power
embedded devices. We run robust watermark embedding on re-
altime video stream using a fast DCT-based algorithm [23]. Our
experiment on a Raspberry Pi results in realtime watermarking
with a frame rate of 1.2 fps, hence poor quality videos.
Limitations. The existing approaches all suffer from perfor-
mance difficulties or functional deficiencies when running on sim-
ple embedded devices. In summary, there are no existing adequate
solutions for low-end IoT cameras to achieve visual privacy protec-
tion, video authenticity, and fine video quality all together.

4 DESIGN OF PINTO
4.1 Key Features
Decoupled blurring procedure. Pinto exploits computational
asymmetry of object blurring. This stems from our observation in
the experiment above. The conventional blurring procedure is as
follows: (i) take the realtime frame from camera module (I/O time);
(ii) detect faces/plates in the image (Detect time); (iii) blur those
areas (Pixelate time); and (iv) write the blurred frame to a video file
(I/O time). Table 2 shows the time taken in each step when running
the realtime blurring on Raspberry Pi. This result shows that the
face/plate detection phase is the main bottleneck for object blurring,
which takes orders of magnitude more CPU time (×104) than the
pixelation phase (only 0.05 ms per frame). Pinto decouples these two
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Figure 3: H_Pixelation example.

tasks: the CPU-intensive object detection and the computationally-
lightweight pixelating operation. Pinto performs fast pixelation of
entire frames in real time while deferring the CPU-intensive object
detection until necessary for post processing.
Block-level operation. To realize fine-grained visual privacy
on each frame, we take a grid-based approach.We divide each frame
into equal-sized subimage blocks, so that pixelation is indepen-
dently applied within each individual block. This sets up operational
boundaries for pixelation in each frame. Pinto performs block-level
pixelation on every block (in real time), blocks of sensitive objects
(post-processing for video sharing), and blocks of non-sensitive
objects (for verification). Pinto provides streamlined procedures
for (owner-side) realtime and post processing and (requester-side)
verification.
Hash-Pixelation. Pinto leverages pixelation for both visual pri-
vacy protection and forgery prevention. We devise hash-pixelation
(or h_pixelation) for these purposes. Given an original subimage
block, the h_pixelation procedure (Fig. 3) is as follows: (1) hash the
subimage block; (2) pixelate it; (3) embed the hash into the pixelated
subimage block. To avoid visual jarring, we distribute a 256-bit hash
into the “lower” 16 bits of the first 16 pixels in the pixelated subim-
age block. We use the least-significant 16 bits (R:6, G:5, B:5) in each
of those 24-bit pixels (R:8, G:8, B:8). Modulating these “lower” bits
incurs no human-perceptible difference in pixelation.

The h_pixelation has the following properties: (i) given an
original subimage block, any entity can immediately generate its
h_pixelated version; (ii) it is however infeasible to invert, thus visu-
ally de-identifying the original, internal contents. (iii) any change
in the original subimage block (posterior fabrication) results in a
different h_pixelation than the original one (especially the embed-
ded hash part); (iv) it is also infeasible to find a different image that
produces the same h_pixelation result.

4.2 Framework
Figure 4 shows the overall framework of Pinto that consists of three
logical parts.
Realtime processing: Pinto-enabled camera performs block-level
h_pixelation of every block in realtime frames while recording
(Fig. 5a). The resulting fully h_pixelated video (1-min default) is

Real-Time Processing Post-Processing 
(if releasing a video) 

Stored  

   original video 

Pinto-Enabled Camera 

 

Original video 

   stored 

Signed p_digest 

stored 

Realtime video frames 
Realtime video frames 

Real-time Video Frames 

Per-frame Encoding 

Per-frame Decoding 

Frame H_Pixelation 

p_digest Generation 

Critical-Block 

H_Pixelation 

 

Generation of 

p_video & p_profile 

Object Detection 

 

Trusted timestamping Server 

Signature 

Generation 

 

p_digest 

 

Certified 

p_digest 

 

IoT communication channel 
p_video; 

p_profile; 

p_digest 

 

Video Requesters 

Authenticity 

Verification 

Figure 4: Pinto framework.

(a) Realtime h_pixelate: every block (b) Post h_pixelate: critical blocks

Figure 5: Block-level operation examples.

hashed upon creation, called p_digest. This p_digest is immediately
sent (via WiFi or LTE) to a trusted timestamping server that signs
it along with the current time. The signed p_digest is later used
for certifying the time and integrity of the video. Thereafter, the
original video (not the h_pixelated version) and its timestamped
p_digest are stored in the device.
Post processing: When sharing of a certain video is needed, the
device applies any existing or customized object detection algorithm
to the corresponding stored, original video upon the circumstances
of requests. This does not require fast computation speed, and the
choice of a particular vision algorithm is independent of Pinto. In
each frame of the video, the blocks that overlap with the detected
regions of sensitive objects (e.g., faces, license plates) are called
critical blocks. During this process, indices of critical blocks in each
frame are logged in a compact form called p_profile. Block-level
h_pixelation of such critical blocks produces a privacy-protected
video, which we refer to as p_video (Fig. 5b).
Verification: Upon the release of p_video, the requester verifies
its authenticity. This is done by using its p_digest and p_profile that
are also made available along with the p_video. If no forgery has
occurred, block-level h_pixelation of non-critical blocks (by con-
sulting its p_profile) will successfully restore the fully h_pixelated
version that is authenticated by its signed p_digest.
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Figure 6: Overall procedures of Pinto.

4.3 Procedural Description

4.3.1 Operating in Real Time

Fig. 6a illustrates Pinto’s realtime operation at the time of recording.
The main objective here is to continuously record a realtime video
stream at a fast rate and to produce its p_digest on the fly. Each
realtime frame taken from camera module is fed into two parallel
paths: one is to write it into a video file (Path 1), and the other is to
process it for the p_digest generation (Path 2). The total per-frame
processing time—hence the resulting frame rate—is determined by
the time taken in Path 2 that has more components than Path 1.
Frame operation. To minimize the per-frame processing time,
we keep the components of Path 2 lightweight. In Path 2, the re-
altime frame is divided into the predefined number of equal-sized
blocks (We recommend the use of 196–256 blocks per frame in
the light of processing speed and video quality, discussed later in
Section 6). Then block-level h_pixelation is applied to every block.
The resulting h_pixelated frame is hashed (per-frame hash) then

discarded. The next frame is read from the camera module, and
processed on.
p_digest generation. Upon recording of the current 1-min video
u, its deviceA generates p_digestu (256 bits) by collectively hashing
all the per-frame hashes, and sends it to a trusted, online timestamp-
ing server. Then, A deletes those per-frame hashes, and proceeds
with frame operations for the next recording video. In themeantime,
the server S returns the time-stamped p_digestu :

S −→ A : Tucur , {H (p_diдestu |Tucur )}K−S .

where Tucur and K−S are the current time and S ’ private key, respec-
tively. This signed p_digestu is stored with video u.

4.3.2 Post Processing for Visual Privacy

Generation of p_video and p_profile. When a certain video u
needs to be shared, critical blocks in each frame ofu are h_pixelated
to produce p_videou as illustrated in Fig. 6b. We develop a library
function that returns critical blocks when running any chosen
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Figure 7: MJPEG-compliant compression (post processing prior to video sharing).

object detection algorithm on video u. In this process, their indices
are logged in a compact data structure, p_profileu . It is a bit array
where each bit is associated with the block index indicating whether
it is a critical block or not. Given a 50-Mbyte, 1-min HD video with
256 per-frame blocks, the size of p_profile is at most 46 Kbytes,
which is less than 0.1% overhead. Once generated, p_videou and
p_profileu are released along with the signed p_digestu .

4.3.3 Verifying Video Authenticity

For each frame of p_videou , the requester performs block-level
h_pixelation of non-critical blocks (by using its p_profileu ) and pro-
duces a per-frame hash of the resulting all-block-h_pixelated frame
as illustrated in Fig. 6c. These per-frame hashes are collectively
hashed, and the resulting one is further hashed along with the time
of recording, Tucur . The authenticity—the time and integrity of the
video—is verified if it matches with the time-stamped p_digestu
certified by trusted timestamping server S whose public key K+S is
known.

4.4 Dealing with Generation Loss
One key design requirement is that Pinto’s sequential, three
h_pixelating operations—the realtime, the post processing, and the
verification—must be applied to identical frames. However, genera-
tion loss—the loss of quality when using lossy compression—would
cause inconsistency between realtime frames and their processed
versions due to video encoding. Such inconsistency will nullify the
signed p_digests generated with realtime frames.

One straightforward approach to handling generation loss is to
keep videos uncompressed. However, it significantly increases the
file size (e.g., 550 Mbytes for a 1-min video) that is too costly for
continuous recording of surveillance videos. We devise a storage-
efficient way to address the inconsistency problem.

4.4.1 Initial Compression for Video Recording

We arrange an initial conversion that is equivalently applied to the
realtime and the post processing procedures to offset generation
loss. More specifically, each realtime frame captured from camera
module is first encoded into a JPEG image. This JPEG-encoded frame
and its decoded version are fed into Paths 1 and 2 respectively (Fig.
6a), as described in Section 4.3. As a result, original videos are stored
as Motion JPEG (MJPEG) format.

This MJPEG-based initial encoding is chosen for the following
reasons: (i) frames processed for the realtime and the post pixelation
are made identical while having original videos lossily compressed;
(ii) MJPEG is not computationally intensive and is now widely-used
by video recording devices like IP cameras; and (iii) it is simple
to implement, and most commodity cameras today already sup-
port built-in functionality to output JPEG-encoded images directly
during the recording process.

4.4.2 MJPEG-Compliant Coding for Video Sharing

To handle “second-order” generation loss, we use MJPEG-compliant
compression for release of p_videos. We specifically leverage the
JPEG frame structure (Figure 7), where an image is stored as a
series of compressed, 8×8-pixel image tiles, called MCUs (minimum
compression units) and each MCU is processed separately. We
make our Pinto-blocks aligned with the JPEG-MCUs (i.e., each
block covers multiple MCUs exactly), applying post-h_pixelation
selectively to only some MCUs while preserving the other MCUs
intact. Pinto produces a p_video in MJPEG format where original,
compressed MCUs on non-critical blocks are retained, but post-
h_pixelated, critical blocks are separately contained with lossless
compression in their frames. Given a p_video, the requester can
easily reconstruct the identical frames by using its p_profile. We
develop a simple decoder for this purpose.

The resulting size of a p_video becomes slightly larger than that
of the stored, original version. We, however, point out that the
compression ratio is still high because the majority of JPEG-MCUs
are generally on non-critical blocks, and thus remain intact. Our
measurement shows that a 50-Mbyte original video turns into a
52-Mbyte p_video on average (cf. 550 Mbytes for a 1-min, uncom-
pressed video). We also note that p_videos are only used for video
sharing, not for storing. Requesters can, once verifying p_videos,
further shrink them back to the original size and store them in
various formats.

4.5 Design Decisions
There are two key design factors in Pinto.
Pixelation intensity. It affects the visual privacy and perceived
frame quality. As an extreme example, obscuring with pixels of a
constant color will provide complete privacy, but such masking
results in more perceptually-jarring frames. The intenser the pix-
elation (i.e., overly-blurred videos), the poorer (/the stronger) the
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(c) Address signs

Figure 8: [Deep-learning] Recognition success ratio (R-ratio) vs. pixelation scale (P-scale).

human-perceived video quality (/privacy protection). Ideally, pixela-
tion intensity should be as minimal as possible while de-identifying
sensitive objects. Note, the realtime pixelation of entire frames (for
p_digests) and the post-pixelation of sensitive objects (for p_videos)
must be the same scale to enable the verification process, i.e., one
common pixelation scale for Pinto.
In-frame block count. It controls the processing speed and
video quality. The fewer the block count per frame, the faster the re-
altime processing, hence the high-frame-rate videos. This is because
the h_pixelating operation, albeit lightweight, is independently ap-
plied to individual blocks. However, such coarse-grained block
division, i.e., large-sized blocks, results in overly-pixelated p_videos
regardless of the actual sizes of sensitive objects in their frames.
The in-frame block count should be determined for fine-grained
block division while ensuring fast processing speed for producing
high-frame-rate videos.

We carefully choose them by balancing their trade-offs via ex-
tensive experiments as detailed in Section 6.

5 IMPLEMENTATION
Pinto is implemented in 1.1K lines of Python and C++ code. We use
OpenCV [13] that is a cross-platform, open-source library for vision
and image processing. Here we briefly describe some key functions
of OpenCV that we use for a platform-independent implementation
of Pinto based on the design detailed in Section 4.

For each realtime JPEG-encoded output from camera module,
the imdecode() function is called to decode it into an image frame.
The frame is divided into the predefined number of equal-sized
blocks, each of which is contained and processed in the ndarray
format (n-dimensional array) as universal data structure in OpenCV
for images. Block-wise h_pixelation is done using: (i) the update()
function in hashlib library for fast hash calculation; and (ii) the
resize() function whose scaling parameter determines the pixela-
tion intensity. Per-frame hashes (and their eventual p_digest) are
also obtained by the update() function. In the post-processing, we
use our cblock() function to identify critical blocks in each frame.
Existing vision algorithms locate objects in an image and returns the
coordinates of each enclosing rectangular area. Taking this as input,
the cblock() function outputs the indices of critical blocks that
overlap with the detected object areas. For p_video en-/decoding,

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$" $#(" %" %#(" &" &#(" '" '#(" (" (#("

-
.
/0
12
34
0
2
"5
6
//
.
77
"-
84

0
"

!"#$%&'(

93/.27.":;8<.7"

=>>?.77"73127"

Figure 9: [OCR-based] Recognition success ratio.

we use the imencode() function that supports MJPEG-based con-
versions, and also use H.264 provided by libx264 library for critical
blocks. In the verification, the array_equal() function is used for
the p_digest comparison.

There are also device-specific aspects in implementing Pinto,
such as camera modules and network interfaces. We implement
Pinto in three different embedded platforms and these aspects will
be discussed in Section 6.3. All our source code is available at
https://github.com/inclincs/pinto.

6 EVALUATION
We answer four questions about Pinto in this section:
• How much visual privacy does it provide?
• How well does it prevent against content forgery?
• How much video frame rate does it achieve when applied to
low-end devices?
• How does in-frame block count affect human perceived video
quality in real-world applications?

6.1 Protection of Visual Privacy
Scale of pixelation. The key to protecting visual privacy in
Pinto is how to set the pixelation intensity. We call it a P-scale,
which signifies the degree of lowering the original resolution. For
example, P-scale X corresponds to scaling down the resolution by
a factor of X 2, i.e., reducing the number of distinct pixel values
in an image by replacing a square block of X 2 pixel values with
their averaged value. This process is non-invertible—impossible to
restore from pixelated images to the original ones—and has been
shown to successfully thwart “human” recognition [37, 53].
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(c) Address signs

Figure 10: [Deep-learning] Recognition success ratio (R-ratio) by object-size.

6.1.1 Deep-Learning Powered Attackers

To measure privacy against automated recognition, we consider the
case of video requesters, as potential attackers, equipped with visual
analytics tools. More specifically, we experiment with two state-of-
the-art recognition methods: Deep-learning based and OCR-based
approaches.

For deep-learning recognition, we use TensorFlow [19]. We col-
lect +100K images of UK license plates, +334K facial photos of 334
celebrities (each with 100 photos), and +50K pictures of address
signs. By pre-processing, we make each image have multiple ver-
sions with different scales of pixelation. The resulting datasets are
categorized by object-type (plate/face/sign) and by P-scale. We use
them as training input to the deep-neural-network (DNN) model
that internally performs learning and classification of characters,
digits, and facial features for recognition.

For plates and signs, we also test with an optical character recog-
nition (OCR) approach. More specifically, we use Tesseract [20], one
of the most accurate OCR engines. It comes with built-in training
data for character recognition, so we directly apply our test data
for evaluation.

6.1.2 Privacy Performance by Object-Type

We run experiments on our test images of 462 UK plates, 157 peo-
ple (out of the 334 celebrities, but different photos than the ones
in the training data), and 350 signs. The testing datasets are also
categorized by object-type and by P-scale. We specifically measure
the recognition success ratio (R-ratio) as the probability that the
adversary correctly recognizes the objects pixelated in our test
images.

Figures 8a, 8b, and 8c show the results of R-ratio when using
deep-learning recognition against P-scale, while varying n, the size
of training datasets by object-type: plates, faces, and signs, respec-
tively. We see that, the larger the volume of training data, the higher
the R-ratio, but showing diminishing returns. This indicates that
our datasets are of sufficient volume to train the deep-learning
recognition. The results show that the R-ratio decreases with P-
scale; it drops below 0.01 when P-scale is higher than 9 (for plates
and signs) and 11 (for faces). The reason for the different results
by object type here is partly because the recognition performance
also depends on the size of a candidate pool. Identifying one out of
a certain number of faces—334 people in our test—is smaller-scale

(a) P-scale = 5 (R-ratio: 70.2%) (b) P-scale = 9 (R-ratio: 3.3%)

Figure 11: Pixelation of a license plate (same object).

a   

(a) P-scale = 4 (R-ratio: 65.3%)

a   

(b) P-scale = 10 (R-ratio: 1.7%)

Figure 12: Pixelation of a human face (same object).

(a) P-scale = 5 (R-ratio: 57.6%) (b) P-scale = 9 (R-ratio: 2.4%)

Figure 13: Pixelation of an address sign (same object).

recognition than the cases of number plates and address signs. In re-
ality, we expect a more moderate R-ratio result of face recognition,
for a given P-scale, against a larger set of faces.

We also present the results of R-ratio when using the OCR-based
recognition against P-scale in Figure 9. It also exhibits declining
trends over P-scale, but underperforms the deep-learning recogni-
tion. This result shows that the DNN-based approach is the stronger
adversarial model for recognition against pixelation.

6.1.3 Privacy Performance by Object-Size

We further experiment with deep-learning recognition while vary-
ing the size of pixelated objects. We classify our training/testing
data into three groups by object-size: large (> 100×100 pixels),
medium (25×25–100×100 pixels), and small (< 25× 25 pixels). Fig-
ures 10a, 10b, and 10c show the results of R-ratio by object-size and
by object-type. We see that the larger the object size, the higher
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(a) Original-frame image (b) Forgery: Copy-move

(c) Forgery: Erasing objects (d) Forgery: Lighting

Figure 14: Examples of video forgery.

the R-ratio. In other words, large objects—having more pixels than
small objects—require the high degree of pixelation to thwart recog-
nition. For example, in the context of our 1280×720 HD frames, the
R-ratio for large objects becomes below 0.01 when P-scale is higher
than 10 (for plates and signs) and 11 (for faces). To give a feel for
how they actually look, Figures 11, 12, and 13 show samples of our
large-sized, testing objects2 with different P-scales that result in
R-ratio > 0.5 and R-ratio < 0.05 in the cases of plate, face, and sign,
respectively.

6.1.4 Choice of P-scale

As discussed in Section 4.5, the pixelation intensity should be as
minimal as possible while de-identifying sensitive objects. Our
privacy experiments suggest that the P-scale should be set higher
than 11 to protect against the plate/face/sign recognition, making
R-ratio below 0.01. Based on this result, we choose to set P-scale=12
for Pinto to balance the privacy-frame quality tradeoff.

6.2 Prevention of Content Forgery
Pinto uses realtime signatures of h_pixelation (pixelation with
original-hash embedding) to prevent content alterations to original
videos. In this section we demonstrate forgery-proofness of the
h_pixelation in comparison with the use of pixelation only and the
use of hash only.

6.2.1 Forgery Methods

We apply various types of video forgery (i.e., per-frame image
forgery), some of which are categorized in [35, 62], to the test-
ing images and our own surveillance videos. These forgeries are:
Copy-move (copying and pasting an image part; Fig 14b), Splic-
ing (merging images), Erasing (removing some objects in images;
Fig 14c), Lighting (altering lighting conditions; Fig 14d), Retouch-
ing (modifying certain image features), Collision (creating fake
images with the same pixelation results as the original ones; Fig.
15), and Pixelation (manipulating images via pixelation; Fig. 16).
Such forgery can be done easily with video editing software avail-
able today [5]. We partly use them to exercise the various types of
forgery listed above. We also develop our own script using OpenCV
that automates the forgery process.

2We here slightly adjust their sizes to fit for presentation in the paper.

Forgery success ratio (F-ratio)

Forgery type No Pixelation Pixelation H_Pixelation
(Hash-only) (P-scale: 12) (P-scale: 12)

Copy-move 0% 0% 0%
Retouching 0% 0.3% 0%
Collision 0% 100% 0%
Pixelation 100% 0% 0%
Splicing 0% 0% 0%
Erasing 0% 0% 0%
Lighting 0% 0% 0%

Table 3: Summary of the forgery experiment results.

6.2.2 Verification by Forgery-Type

We measure the forgery success ratio (F-ratio) as the probability of
making forgery without detection. We consider that a forgery is
successful if the alteration of a video still produces the same result
as its realtime h_pixelated version—hence authenticatable by its
certified p_digest along with the time of the video3. Table 3 shows
the measurement summary from the various type of forgery on
1280×720 HD frames. We also present the results of solely using
pixelation or hashing to demonstrate why pixelation with hash
embedding is necessary. As shown in the table, the h_pixelation
provides forgery-proofing in all cases. On the other hand, the solely
use of pixelation or hashing lays video evidence open to posterior
fabrication with the following two specific types of forgery.

(c) Collision 2 (b) Collision 1 (a) Original 

(d) Pixelation-only H_Pixelation 

… 

Same pixelation 
result 

Collision resistant 
via hash 

embedding 

Figure 15: Collision forgery example.

Collision forgery. Given an original image, it is possible for
forgers to create other images—even visually meaningful—that
produce the same pixelation. The forgers, aware of the pixelation
function (e.g., averaging pixel values), can come up with fake im-
ages (Fig. 15b and 15c) by tweaking the input pixels while their
pixelated outputs are the same (Fig. 15d). Pixelation at any P-scale
is vulnerable to such collision forgery. On the other hand, the
h_pixelation is collision resistant. Especially the original hash, that
is embedded into the pixelation, eliminates the possibility of such a
second-preimage attack.

3 Note, faking the time of a video is very difficult because: (i) it is certified by the
timestamping server who signs p_digest with the current time upon recording; and
(ii) one cannot predict the future, e.g., time of an incident, and the usefulness of a
recording is not known a priori.
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(a) Original-frame image (b) Forgery: Fake pixelation

Figure 16: Pixelation forgery example.

Pixelation forgery. Realtime signatures, if solely generated
from original images, are no longer valid for post-pixelated videos.
Even if block-level hashing is applied, the forger still can poste-
riorly falsify a part of a frame via fake pixelation to convey dis-
information (Fig. 16b). The solely use of original hashes is prone
to such pixelation forgery. This can further admit of “unpixelated”
alterations with falsely marked as pixelation, if possible, to elude
authenticity verification. On the other hand, realtime signatures
of h_pixelation—which reflect not only original images but also
their realtime pixelated versions—preclude the possibility of such
pixelation forgery.

6.3 Video Quality on Real Applications
The in-frame block count determines video quality of Pinto. To eval-
uate the video quality on real-world applications, we implement
Pinto in three different embedded platforms, and apply them to spe-
cific application contexts: security cam, in-car dashcam, and drone
cam. Table 4 gives the information (platforms, network interfaces,
object sizes) about our real-world deployment.

Application Platform IoT Object
interface size

Security cam BeagleBone (720 MHz) Wi-Fi Large
Dashcam CubieBoard (1.0 GHz) LTE Medium
Drone cam Raspberry Pi (1.2 GHz) LTE Small

Table 4: Deployment on real-world applications.

6.3.1 Video Quality Metrics

Video frame rate. Frame rate is measured in frames per second
(fps) and is the one of the most important aspects of video quality.
It describes the speed of recording hence the speed of playback,
representing the motion aspect of a video stream—the quality of
the video motion. A frame rate of at least 12 fps is recommended
for the human eye to comprehend the motion properly [7].
Per-frame quality. Due to the block-level pixelation, the sizes
of pixelated areas in p_videos are inevitably at least equal or larger
than the actual sizes of sensitive objects in their frames. We use the
structural similarity (SSIM) index [64], a method for measuring the
human-perceived quality of digital videos to compare p_videos with
the conventional, object-sized pixelated versions 4. The SSIM index
is valued between -1 and 1. When two sets of images are nearly
identical, the resultant SSIM index is close to 1. This represents the
perceived quality of each frame.
4We exclude unpixelated frames from the SSIM calculation for conservative results.
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Figure 17: Video quality on BeagleBone (720 MHz CPU) as a Pinto-
enabled security cam for on-site surveillance

6.3.2 On-Site Security Cam with Pinto

We apply Pinto to a security cam for on-site surveillance. We use
the BeagleBone [2], a single-board computer with 720 MHz CPU
running Ångström Linux as a Pinto-enabled device. With no custom
add-on available, we use an off-the-shelf $30 HD webcam as camera
module connected (via USB port) to the BeagleBone. To capture
video stream from the webcam, we use the Video4Linux2 (v4l2)
API [21]. We specifically set the capture format as MJPEG via the
ioctl() function to get JPEG frames as input for Pinto. We use
a USB WiFi adapter to send p_digests upon their creation to our
timestamping server. Figure 18a shows the picture of our Pinto-
enabled security camera installed for on-site surveillance.

Camera  

module 

WiFi 

module 

BeagleBone  

for Security Cam 
 

(Pinto-enabled) 

(a) Pinto-enabled security cam (b) p_video (B-count=196)

Figure 18: On-site surveillance with Pinto.

We evaluate video quality of the Pinto-enabled security cam
using the predefined P-scale=12, while varying the in-frame block
count (or B-count). Figure 17a plots the resulting frame rate. Note,
the x-axis for B-count is a log scale that increases by factors of 2.
The frame rate evenly decreases with B-count, and our videos are
still at 18 fps even when B-count=400. We also run the conventional
realtime blurring on BeagleBone, which results in 0.4 fps. Our in-
tention here is not for direct comparison, but rather to give a sense
that the frame rate achieved by Pinto is previously unattainable for
privacy-protected, forgery-proof videos in these kinds of low-end
devices.

We next measure the SSIM of p_videos from our on-site video
surveillance. When calculating SSIM, we use the conventional
object-sized pixelation as reference. To obtain more meaningful
results, we only take into account the frames containing sensitive
objects, filtering out the cases where the reference and Pinto have
identical, unpixelated frames. Figure 17b shows the SSIM result
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Figure 19: Video quality on Cubieboard (1 GHz CPU) as a Pinto-
enabled dashcam for vehicular surveillance

over B-count. We see that, the SSIM increases with B-count, con-
verging close to 1 when B-count ≥ 196. Note, when two images are
nearly identical, their SSIM is close to 1. This implies that here the
B-count near at 196 is fine-gained enough for satisfactory perceived
quality. Figure 18b shows a sample frame of our p_video at 19 fps
with B-count=196. We refer the reader to our security-cam p_video
at https://github.com/inclincs/pinto-sec-cam-video-ex.

6.3.3 In-Car Dashcam with Pinto

We apply Pinto to a dashcam for vehicular surveillance. We here
use the Cubieboard [8] with 1 GHz CPU running Cubian Linux
as a Pinto-enabled device. As in the previous case, we use the
off-the-shelf webcam as camera module for Pinto running on the
Cubieboard. We have an Alcatel LTE USB stick plugged to the
Cubieboard for the connectionwith our timestamping server. Figure
20a shows the picture of our in-vehicle setup.

Camera  

module 

LTE module 

Cubieboard  

for Dashcam 
 

(Pinto-enabled) 

(a) Pinto-enabled dashcam (b) p_video (B-count=225)

Figure 20: Vehicular surveillance with Pinto.

Figure 19a plots the frame rate of the Pinto-enabled dashcam.
The dashcam result shows a similar trend to the security-cam case
as both devices have video recording as their main functionality.
Here, the resulting videos are at 19 fps when B-count=400. We also
test with the realtime blurring on the Cubieboard. The frame rate
on Cubieboard, albeit somewhat better than the realtime blurring
on BeagleBone, is at only 1.1 fps.

Figure 19b shows the SSIM of p_videos from our vehicular surveil-
lance. In this environment where license plates are the majority of
sensitive objects for pixelation—mostly appearing as medium-sized
objects in frames, the SSIM reaches close to 1 when B-count ≥ 225.
This suggests that the B-count near at 225 provides satisfactory
perceived quality. Figure 20b shows a sample frame of our p_video
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Figure 21: Video quality on Raspberry Pi (1.2 GHz CPU) as a Pinto-
enabled drone for aerial surveillance

at 20 fps with B-count=225. We refer the reader to our dashcam
p_video at https://github.com/inclincs/pinto-dashcam-video-ex.

6.3.4 Aerial Drone Cam with Pinto

We apply Pinto to a drone camera for aerial surveillance. We build a
mid-sized drone (diagonal 360mm) using the Raspberry Pi with 1.2
GHz CPU running Raspbian Linux as a Pinto-enabled device. The
drone is powered by Navio2 [12], an autopilot kit for Raspberry
Pi, with a set of open-source drivers for all sensors and motors.
The Raspberry Pi controls (via GPIO pins) the drone with user
commands from our remote 2.4 GHz Devo7 transmitter. We use
PiCamera [15], a custom add-on for Raspberry Pi, that provides a
Python interface to capture JPEG frames as input for Pinto. Figure
22a shows the picture of our Pinto-enabled drone built for aerial
surveillance.

Raspberry Pi  

for Drone 
 

(Pinto-enabled) 

Camera  

module 

LTE module  

(a) Pinto-enabled drone (b) p_video (B-count=256)

Figure 22: Aerial surveillance with Pinto.

Figure 21a plots the frame rate of the Pinto-enabled drone cam
while in flight. It exhibits a more declining trend over B-count. This
is because the Raspberry Pi not only runs Pinto but also controls
the drone in this case. Indeed, videos produced by a Pinto-enabled
Raspberry Pi, when used for security cam or dashcam, are at 24
fps with satisfactory perceived quality. Figure 21b shows the SSIM
of p_videos from our aerial surveillance. In this context, most of
sensitive objects appear as small-sized ones in frames, and their
SSIM becomes close to 1when B-count ≥ 256. Our drone-cam videos
with B-count=256 are at 17 fps. Note, most of commercial drones
today have higher device capabilities than Raspberry Pi [3]. We
expect that Pinto performs better in reality, as our current prototype
leaves more room for improvement, such as image processing using
GPUs and multi-threading for concurrent block-wise pixelation and
I/O operations. Figure 22b shows a sample frame of our p_video
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at 17 fps with B-count=256. We refer the reader to our drone-cam
p_video at https://github.com/inclincs/pinto-drone-cam-video-ex.

6.3.5 Choice of In-Frame Block Count

Our evaluations demonstrate a trade-off between motion and per-
frame quality, induced by the choice of B-count. Our results report
that B-count around at 196, 225, and 256 provides satisfactory per-
ceived video quality (both frame rate and SSIM) for on-site, vehicu-
lar, and aerial surveillance, respectively. We recommend to set the
B-count=196–256 depending on the application context.

7 LIMITATIONS AND FUTUREWORK
The P-scale chosen in this work is only applicable to 1280× 720 HD
videos for commodity IoT cameras. Devices operating with larger
(/smaller) frame sizes should use the more (/less) intensive P-scales
to handle the privacy-video quality tradeoff at their own resolution
level. We intend to further study the other resolution cases.

Pinto is currently limited to MJPEG-format. Support for various
formats is possible with additional conversions by devices; and
by a trusted server—if such one exists—that decodes and verifies
p_videos (not the original videos) on behalf of their requesters, and
re-encodes them for video sharing. We intend to explore the use of
video sharing infrastructure for various video formats.

8 RELATEDWORK
There has been extensive research on visual privacy protection or
forgery detection/prevention (video authentication), but little on
both, especially for low-end cameras.

Most prior works on visual privacy protection rely on special-
ized hardware or powerful back-end servers for processing video
streams from camera devices. Authors in [26, 31, 40, 50, 52, 54]
demonstrate high-accuracy face-detection at a frame rate of 16–30
fps (mostly on 640×480 frames) using their dedicated, custom FPGA-
based hardware. However, such robust object-detection is simply
not up to task for real-time operations in commodity devices [24]
and thus, many researchers exploit server-side processing. Respect-
ful Cameras [60] use Panasonic’s security cameras transmitting
MJPEG streams to back-end servers (3.4 GHz CPUs) for realtime
video processing. They also rely on visual markers for object track-
ing, requiring people wear colored markers such as hats or vests,
and their faces will be blurred. Cardea [61] uses Samsung Galaxy
Note 4 as client cameras, and connects them via WiFi with a server
(3.60 GHz CPU) for realtime recognition.

Vigil [69] makes an effort to partition video processing be-
tween edge computing nodes co-located with cameras and the
cloud servers via frame prioritization. While effective in realtime
monitoring—indeed, the main goal of Vigil, its frame sampling ap-
proach is not quite suitable for realtime frame-by-frame blurring.
ViewMap [46], originally designed for the privacy of users sharing
videos, is the rare case of running realtime blurring at the camera
level, but their dashcam videos are only at 5–7 fps. Pinto is an ideal
complement to ViewMap, making their dashcams produce not only
privacy-protected, but also high-frame-rate videos.

Existing forgery detection techniques aim to verify whether orig-
inal images have been altered or not. They can be roughly grouped
into two categories. The first one is the reference-based analysis

such as digital watermarking [57, 65] and fingerprinting [47, 59],
that requires prior image-processing results on original materials.
The drawback of this approach, when applied to video surveillance,
is that a watermark (/fingerprint) must be inserted (/produced)
at the time of recording, which limits this approach to specially
equipped, resourceful cameras. The second one is the post-analysis
techniques such as SVM classifier [44, 45], pixel-based [30, 34],
partition-based [66, 68], format-based [32, 49], and geometric-based
analysis [42]. While adequate for detection of image alternation in
general, their performance on post-processed, privacy-protected
videos has not been proven yet. Moreover, they do not verify the
time of recording. Note, the conventional hash-based, time-stamped
signatures upon recordingwill be no longer valid after post-blurring.
There exist some research efforts aimed at estimating “the time of
day” of images without timestamps [43, 48], via the sun position
by leveraging shadows in the images. While creative, they are only
applicable to outdoor, daytime videos.

9 CONCLUSION
Pinto is a video privacy solution for low-end IoT cameras. The key
insight is: (i) to perform fast, lightweight pixelation in real time
while deferring the CPU-intensive object detection until necessary
for post-processing; and (ii) to leverage pixelation for both privacy
protection and forgery prevention via the streamlined block-level
operations. We have integrated Pinto into security cam, dashcam,
and drone cam, and all successfully produce privacy-protected,
forgery-proof videos at 17–24 fps. Pinto is widely applicable to any
kinds of IoT cameras, e.g., wearable cams, sensing cams for self-
driving cars, etc. In a broader scope, our solution explores to over-
come the problem of privacy-invading, forgery-prone recordings—
the key barrier to video sharing today—while not giving up video
quality under limited device capabilities.
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